
AUTOMATE ALL THE THINGS!
Christopher Gervais - @ergonlogic

★ Veteran open source programmers and sysadmins
★ Specializing in and
★ Experts in end-to-end application lifecycle
★ Focus on social enterprises, non-profits, and

public sector

Some of our Partnerships

Principles and Practices of
infrastructure-as-code
Why should we care?

A brief history of cloud
computing
How did we get into this

mess?

How does Ansible support an
infrastructure-as-code strategy?
Components and modules and

providers; oh my!

What we’ll discuss

Putting it all together
Demo time!

XKCD

… because, somehow, a

webcomic provides the

most succinct descriptions

of the reality of automation.

You can never have too much XKCD!

A Brief history of Cloud
Computing
Automate All the Things!

A brief history of cloud computing

● Time-sharing
(government/academic)

A brief history of cloud computing

● Time-sharing
(government/academic)

● Mainframes
(centralized/institutional)

A brief history of cloud computing

● Time-sharing
(government/academic)

● Mainframes
(centralized/institutional)

● Server rooms
(distributed/on-premise)

A brief history of cloud computing

● Time-sharing
(government/academic)

● Mainframes
(centralized/institutional)

● Server rooms
(distributed/on-premise)

● Datacenters
(co-location/hosted)

A brief history of cloud computing

● Time-sharing
(government/academic)

● Mainframes
(centralized/institutional)

● Server rooms
(distributed/on-premise)

● Datacenters
(co-location/hosted)

● Cloud
(utility computing)

The era of cloud computing

Benefits Challenges
Scalability Controlling costs

The era of cloud computing

Benefits Challenges
Scalability Controlling costs

Flexibility Increased complexity

The era of cloud computing

Benefits Challenges
Scalability Controlling costs

Flexibility Increased complexity

Automation Scarce expertise

Principles and Practices of
infrastructure-as-code
Automate All the Things!

Infrastructure-as-code Practices

● Define resources in code
(avoid snowflake servers)

Infrastructure-as-code Practices

● Define resources in code
(avoid snowflake servers)

● Keep documentation inline
(self-documented systems)

Infrastructure-as-code Practices

● Define resources in code
(avoid snowflake servers)

● Keep documentation inline
(self-documented systems)

● Version-control everything
(audit trail and reproducible builds)

Infrastructure-as-code Practices

● Define resources in code
(avoid snowflake servers)

● Keep documentation inline
(self-documented systems)

● Version-control everything
(audit trail and reproducible builds)

● Make small changes
(easier rollbacks)

Infrastructure-as-code Practices

● Define resources in code
(avoid snowflake servers)

● Keep documentation inline
(self-documented systems)

● Version-control everything
(audit trail and reproducible builds)

● Make small changes
(easier rollbacks)

● Test continuously
(fail early)

How does Ansible support an
infrastructure-as-code strategy?
Automate All the Things!

How does Ansible support an
infrastructure-as-code strategy?

Ansible allows us to define

infrastructure components in a

simple YAML syntax.

These files can, in turn, be

committed into version control, and

thus handled as software.

Components

Custom infrastructure-

as-code configuration

depends on Ansible, roles

and modules, which in turn

depend on various Python

libraries.
Ansible

Components

Custom infrastructure-

as-code configuration

depends on Ansible, roles

and modules, which in turn

depend on various Python

libraries.
Ansible

 Python

Components

Custom infrastructure-

as-code configuration

depends on Ansible, roles

and modules, which in turn

depend on various Python

libraries.
Ansible

 Python

Modules

Components

Custom infrastructure-

as-code configuration

depends on Ansible, roles

and modules, which in turn

depend on various Python

libraries.

Roles

Ansible

 Python

Modules

Components

Custom infrastructure-

as-code configuration

depends on Ansible, roles

and modules, which in turn

depend on various Python

libraries.

Roles

Ansible

 Python

Configuration

Modules

Providers
vs.

Modules

Providers: A cloud provider is

(generally) a company that

offers components of cloud

computing (e.g. , IaaS).

Modules: These task plugins

interact with providers’ APIs to

create and manage various

resources.

What’s the difference?

That’s how many different cloud modules Ansible supports

out-of-the-box. These range across 40+ cloud providers, from

Amazon to XenServer.

920+

Authentication and Authorization

Authentication and Authorization

Step 1
User triggers

API call

Authentication and Authorization

Step 1
User triggers

API call

Step 2
API authenticates

user’s credentials

Authentication and Authorization

Step 1
User triggers

API call

Step 2
API authenticates

user’s credentials

Step 3
API checks that user is

authorized for task(s)

Authentication and Authorization

Step 1
User triggers

API call

Step 2
API authenticates

user’s credentials

Step 3
API checks that user is

authorized for task(s)

Step 4
API executes task(s) in

cloud infrastructure

Putting It All Together
Automate All the Things!

QUESTIONS?
Christopher Gervais - @ergonlogic

