
AUTOMATE ALL THE THINGS!
Christopher Gervais  -  @ergonlogic



★ Veteran open source programmers and sysadmins
★ Specializing in                   and
★ Experts in end-to-end application lifecycle
★ Focus on social enterprises, non-profits, and 

public sector



Some of our Partnerships



Principles and Practices of 
infrastructure-as-code
Why should we care?

A brief history of cloud 
computing
How did we get into this 

mess?

How does Ansible support an 
infrastructure-as-code strategy?
Components and modules and 

providers; oh my!

What we’ll discuss

Putting it all together
Demo time!



XKCD

… because, somehow, a 

webcomic provides the 

most succinct descriptions 

of the reality of automation.



You can never have too much XKCD!



A Brief history of Cloud 
Computing
Automate All the Things!
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A brief history of cloud computing

● Time-sharing
(government/academic)

● Mainframes
(centralized/institutional)

● Server rooms
(distributed/on-premise)

● Datacenters
(co-location/hosted)

● Cloud
(utility computing)
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The era of cloud computing

Benefits Challenges
Scalability Controlling costs

Flexibility Increased complexity

Automation Scarce expertise



Principles and Practices of 
infrastructure-as-code
Automate All the Things!
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Infrastructure-as-code Practices

● Define resources in code
(avoid snowflake servers)

● Keep documentation inline
(self-documented systems)

● Version-control everything
(audit trail and reproducible builds)

● Make small changes
(easier rollbacks)

● Test continuously
(fail early)



How does Ansible support an 
infrastructure-as-code strategy?
Automate All the Things!



How does Ansible support an 
infrastructure-as-code strategy?

Ansible allows us to define 

infrastructure components in a 

simple YAML syntax.

These files can, in turn, be 

committed into version control, and 

thus handled as software.
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libraries.
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Components

Custom infrastructure-

as-code configuration 

depends on Ansible, roles 

and modules, which in turn 

depend on various Python 

libraries.

Roles

Ansible

 Python

Configuration

Modules



Providers
vs.

Modules

Providers: A cloud provider is 

(generally) a company that 

offers components of cloud 

computing (e.g. , IaaS).

Modules: These task plugins 

interact with providers’ APIs to 

create and manage various 

resources.

What’s the difference?



That’s how many different cloud modules Ansible supports 

out-of-the-box. These range across 40+ cloud providers, from 

Amazon to XenServer.

920+
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Authentication and Authorization

Step 1
User triggers 

API call

Step 2
API authenticates 

user’s credentials

Step 3
API checks that user is 

authorized for task(s)

Step 4
API executes task(s) in 

cloud infrastructure



Putting It All Together
Automate All the Things!



QUESTIONS?
Christopher Gervais  -  @ergonlogic


